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et l 'on aura de la m~me fa~on: 

K"r ' + ( h -  g)r' - sgt ~ khr ' . 

On obtient deux int6grales ayant la m~me forme que 
celle qui vient d'8tre calcul6e, d 'o5 le r6sultat. 

APPENDICE 2 

Vl s'6crit alors 

Wl=,~,'h(Uh+i Vh) 

× I I exp [2~zi(r-r ')k'). (~)W[[k½-- (-k-+ ~ e x p  t27U(kh+iSo/2)rl dk'dr' .  

L'int6gration par rapport h dx et dy fournit: 

exp (2zU)(ka + iS0/2)r Z ( Un + ion) 
h 

II exp[-2rci(k~-k'~)t]-I 
x (k~. -  k'~+ iSoJ2) ,2 2h z (k~ - K:~ - S o/4 + iSok)dk'~ 

L 

K Kh 

Fig. 5. D6finition du vecteur K h. 

puisque le d6nominateur prend la forme 

k ' 2 - k 2 +  # + i S 0 k  

au degr6 d'approximation d6jb. envisag6 cette expres- 
sions de V1 redonne la valeur pr6c6demment trouv6e 
dans le cas off l 'on n6gligeait l 'absorption. En effet le 
terme $2/4 peut 8tre n6glig6 devant k2S0 = Uo/K= 
170/220 puisqu'il reste voisin de 10 -3 7k -1 pour des 61ec- 
trons d'6nergies 61ev6es (100 keV) par exemple, donc 
est n6gligeable devant Kh, et au mSme degr6 d'ap- 
proximation que pr6c6demment il e n e s t  de mSme de 
S0k qui est de l 'ordre de 10 -2/~, on obtient donc l'ex- 
pression de V1 sans absorption. L'expression de V1 
dans le cas des 2 faisceaux sera identique si l 'on peut 
n6gliger la partie imaginaire de ~r donc lorsque lTh___ 
0,1 eV. 
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Magnetic Structure of Feo.9Mno.9Ge 
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The magnetic structure of Fe0.9Mn0.9Ge was studied on a single crystal by neutron and X-ray dif- 
fraction. The crystal structure is the hexagonal B82 and the room temperature data indicated the dis- 
tribution of metal atoms to be 0.83Mn+0.12Fe+0.05 hole in the 2(a) site and 0.78Fe+0.07Mn+0.15 
hole in the 2(d) site. Low temperature data at 103°K were analyzed by assuming a general model, 
from which four possible structures with non-collinear spins were found. These gave the same net 
magnetic moment per molecule of 1"663B. Magnetization measurements yielded the Curie point at 
241 °K and the moment of 1'393B. 

Introduction 

The binary systems of 3d transition metals with ger- 
manium contain phases with the hexagonal B82 or D88 

* IAEA Fellow from the Research Institute for Iron, Steel 
and Other Metals, Tohoku University, Sendai, now at the 
Department of Electrical Engineering, Faculty of Engineering, 
Yamaguchi University, Ube, Japan. 

t Battelle Memorial Institute, Columbus Laboratories, 
Columbus, Ohio, U.S.A. 

type of structure. These structures have two types of 
site for the transition metal, making layers of transition 
metal atoms only or transition metal atoms plus ger- 
manium atoms. The presence of two metal atom sites 
offers possibilities of metal ordering in ternary com- 
pounds. It has been shown that  the Fel.67Ge compound 
has the B82 crystal structure while the MnsGe3 com- 
pound has the related D88 crystal structure. Both com- 
pounds have ferrimagnetic structures (Ciszewski, 1963; 
Adelson & Austin, 1965). As part of our research on 

A C 24A - 3 
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these systems, we have investigated the ternary system 
Fe-Mn-Ge.  The present study is on the crystal and 
magnetic structure of the ternary compound 
Feo.gMno.gGe. 

Experimental procedure 

Materials were prepared by the method described in a 
previous paper (Adelson & Austin, 1965). The com- 
position Fe0.9Mn0.gGe forms a continuous solid solu- 
tion with Fel.67Ge, with the hexagonal B82 crystal 
structure, P63/mmc (D4h). This was shown by exami- 
nation of several compositions (Fe1-xMnz)1.67Ge with 
x=0 .2 ,  0.4, 0.5, 0.6 and for FeMnGe. The last three 
compositions had second phases of FeGe2, MnsGe3, 
Fe3Ge, respectively. The lattice constants for 
Fe0.gMn0.gGe determined by powder X-ray diffraction 
with Fe Ke radiation were a0=4.088+0.002 and 
c0=5.184+0.002/~.  The pycnometric density of the 
ingot was 7.668 + 0.005 g.cm -3. This measured density 
gave Z =  2.01 for the molecular weight of Fe0.9Mn0.9Ge. 
The close agreement to the theoretical value Z = 2  
indicated metal site vacancies instead of excess Ge 
atoms substituting in the metal sites. The population 
of these vacancies in the (a) and (d) sites was deter- 
mined by powder X-ray diffraction with Fe Kc~ from 
the intensity ratios observed for 00.2/00.4, 10.0/30.0, 
10.1/20.2, 10.0/11.0, and 10.1/11.0. These ratios are not 
affected by preferred orientation. The occupancy frac- 
tion of vacancies was found to be 0.05 + 0.05 in the 
2(a) site and 0.15 + 0.05 in the 2(d) site. In the intensity 
calculation, the two kinds of metal atoms were as- 
sumed to have the same X-ray scattering factor. 

Neutron diffraction data were obtained on diffrac- 
tometers at the Battelle Research Reactor using a 
monochromated beam with 1.04 .~ wavelength. Meas- 
urements were made at room temperature and 103 °K. 
A single crystal 3 x 4 x 5 mm in size was used. This 
crystal showed practically no extinction effects. Mag- 
netization was measured on a pendulum magneto- 
meter at an applied field of 12 kilogauss from room 
temperature to 77°K. 

Neutron diffraction at room temperature 

There are only nuclear scattering contributions to the 
neutron diffraction intensities of Fe0.9Mn0.9Ge at room 
temperature. Fig. 1 shows that the magnetic 00.1 peak 
intensity decreases with increasing temperature and 
disappears above 213°K. The intensities of twenty re- 
flections were analyzed after elimination of a small 
contamination due to the half-wavelength. The results 
indicated ordering in the distribution of Fe and Mn 
atoms in the metal sites. Fig. 2 shows the comparison 
of the observed intensities with the calculated 
I(hk.l)/l(ll.O) as a function of the fraction of Fe 
atoms in the 2(d) site. The Debye temperature O was 
assumed to be 425°K, a value suggested by that of 
Fex.60Ge (Adelson & Austin, 1965). The results indi- 

cate that almost all Fe atoms occupy the 2(d) sites and 
almost all Mn atoms occupy the 2(a) sites. The best 
fit was obtained with the following distribution: 

Hole Fe Mn 
2(a) site 0.05 0.12 0.83 
2(d) site 0.15 0.78 0.07 

With this distribution the Debye temperature was re- 
determined from the slope of In (lobs sin 20/F:~1c ) 
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Fig. 1. Variation of the peak intensity of 00.1 of Feo.9Mno.9Oe 
with temperature. 
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Fig.2. Nuclear scattering intensities of Fe0.9Mn0.9Ge as a 
function of the atomic fraction of Fe in the 2(d) site, cal- 
culated (curves) and observed (circles). 
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with respect to (sin 0/2) 2, where 0 is the Bragg angle, 
F0 is the structure amplitude factor disregarding ther- 
mal motions, and 2 is the neutron wavelength. The 
value of O thus obtained was 400+ 130°K. The re- 
calculation using this value had little effect on the dis- 
tribution concluded above. Table 1 gives the theoretical 
and experimental values of F 2 at room temperature. 

Table 1. Nuclear scattering intensities of 
Fe0.9Mn0.9Ge (at room temperature) 

hk.l F02cale F02obs 
00.1 0 0 
00.2 12"11 11 "10 
00.3 0 0 
00.4 7.62 5.36 
10.0 3.69 3.64 
20.0 3.69 4-14 
30.0 7.62 7.55 
10.1 0.0432 0.0452 
10.2 1.44 1.71 
10.3 0.0432 0.128 
10.4 3.69 3.39 
20.1 0.0432 0.0192 
20.2 1.44 1.38 
20.3 0.0432 0.0695 
20.4 3.69 4.08 
21.0 3.69 4.02 
21.1 0.0432 - 
21.2 1.44 1.51 
21.3 0.0432 - 
11.0 7"62 8"21 
11.1 0 0 
11.2 12"11 14-03 
11.3 0 - 
11.4 7"62 6"28 
22.0 7"62 7"92 
22.1 0 - 
22.2 12"11 11"78 

Magnetic structure 

Low temperature measurements were made at 103°K 
by using a cryostat of aluminum. The scattering due 
to the wall of the aluminum vessel was eliminated by 
blank measurements for each diffraction line. Inten- 
sities of the magnetic scattering were obtained for four- 
teen reflections. Only reflections with strong magnetic 
intensities but with weak or zero nuclear intensities 
were analyzed. Those were 00.1, 00.3, 10.1, T0.1, 10.2, 
10.3, 10.3, 20.1, 20.2, 20.3, and 11.1. The 00.2 intensity 
was added to them because it is least affected by any 
uncertainty in the form factor. The other two, 10.0 and 
11.0, were for reference only. The form factor, Fef(d), 
obtained by Weiss & Freeman (1959), was used both 
for Fe and Mn atoms. 

The magnetic structure was proposed with no special 
assumption except that  there are non-collinear spins 
in order to account for the 00.1, 00.3, and 11.1 reflec- 
tions. When the Debye temperature factor is omitted, 
the magnetic structure factor in the full vector expres- 
sion is given by 

q F =  Z p~ sin a~ exp (ivO exp (i~. r 0 , 
i 

where q is the magnetic interaction vector, p~ is the 
magnetic amplitude vector of the i th atom, at is the 
angle between the spin vector and the scattering vector, 
~a is the phase angle of the spin vector in the reflection 
plane, x is the reciprocal lattice vector for the reflection, 
and rt is the position vector of an atom. For  simplicity, 
we take p~ to be the spin vector itself omitting the form 
factor, f (d) ,  and write the corresponding magnetic 
structure factor by qFo. The spin vector p~ can be re- 
solved into the two components, p7 and p~, respectively, 
parallel and perpendicular to the c axis. The phase 
angle ~,, is also replaced by r/~ and ~0~, where r/, is the 
phase angle along the c axis, so that  it must be 0 or n, 
while ~0~ is the phase angle in the basal plane. Thus 

qF0 = X p~ sin a~ exp (it/0 exp (i~. ri) 
i 

+ Z" p~ sin ~t b exp (i(p~) exp (i~. r~), 
i 

where a7 and a~ are the angles between the scattering 
vector and the spin component vector along and per- 
pendicular to the c axis, respectively. Then we have 

q2E20= Z. Z.p~p~ sin a~ sin a~ cos (r/~j+Rtj) 
t j 

+ ~. Z. pipjb b sin a~ sin a~ cos (~0tj + R~j) 
l . I  

where 

r/~j = r/~ - r/l , ~0~j = ~0~ - ~0~, and R~ = x .  (rt - r i ) .  

The average over the possible domains gives 

q2F2 = sin 2t~ .~ Sp~p~ cos r/,~ cos R,~ 
t j 

b b +½(1 + cos 2¢) S Xp~pi cos ~0~ cos R,~, 
• . J 

where ¢ is the angle between (hk.l) and the basal plane. 
From the distribution concluded previously, we as- 

sume that Mn atoms occupy only the 2(a) sites and 
Fe atoms occupy only the 2(d) sites. We further assume 
~01 = --~02 for the 2(a) site and 993 = -(/74 for the 2(d) site 
because of ordering. Since we can take r h = 0, we have 
eight possible cases for the combinations of r/'s as fol- 
lows: 

(i) (ii) (iii) (iv) 

1]1 0 0 0 0 

172 0 0 0 lr 
I]3 0 0 7/: 0 

/']4 0 7/: 0 0 

(v) (vi) (vii) (viii) 

0 0 0 0 
0 lr lr rt 
n 0 rc n 
rc zr 0 ~z 

The value of cos r/i~ ( i# j= 1,2,3,4) is either + 1 or - 1. 
Thus, since ¢ and R~j are known quantities in the 
equation above, it is possible to solve for the unknown 
pl=p2=Pa, p3=P4=pd, ~01 and (,03, for example, in 
cases (i) and (v) which give the same expressions, 

q2F2(OO.1)=O+[4(p° a sin ~01)2+4(p~ sin ~03) 2] 
q2F2o(10.0) = [4(pCa + p~)2] + 0" 50014(pb, COS ~01 

+p~ COS (p3)2], etc. 

A C 24A - 3* 
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where the first term in brackets is the c-axis term and 
the second term is the basal component. 

The expressions for 10.1, 10.3, 20.1, and 20.3 involve 
multiples of 3(pS) 2 and 4(pba sin ~Ol) 2 + 3(p~ cos ~03) 2 
+ (p~ sin ~03) 2. Thus, these terms can be determined by 
least-squares calculations of observed intensity data. 
The results are: 

(pS)2 = _ 0.07 + 0.14 
and 

4(p~ sin ~01) 2 + 3(pba cos ~03) 2 

+(p°  a sin ~03)2 = + 1.21 + 0.43. 

Since (p~)2 must be positive, we can conclude that 
p§=0. [Similar situations occur in all other cases, al- 
though 3(pS) 2 is replaced by (p§)2 in cases (ii) and (iii), 
by 4(pCa) 2 + (pCa)2 in (vi) and (vii), and by (2p~ + ]/3p~) 2 
in (viii) and (iv).] 

Assuming p~= 0, we then have as the final forms of 
equations to be solved 

00.1, 00.3, 11.1" 4[(p°a sin ~Ol)2+(p~ sin (p3)2]=0.98 

10.1, 10.3, 20.1, 20.3: 
4(pba sin ~01) 2 + 3(p~ cos ~03) 2 + (p~ sin (p3) z = 1.02 

10.2: 1.40(p~)2+0.826[(2p~ cos ~0~+p,~ cos ~03) 2 
+ 3(p~ sin ~03) 2] = 0.56 

20.2: 2"72(p~)2+0"661[(2pa b COS (p~ +p,~ COS ~03) 2 
+ 3(p~ sin ~o3) 2] = 0"60 

00.2: 4[(p~ cos ~0~ +p~ cos ~o3) 2] =0"80. 

It should be noted that the observed value of 0.98 for 
00.1, 00.3, and 11.1 is the mean value in consideration 
of experimental weights and the value 1.02 for 10.1, 
10.3, 20.1, and 20.3 is recalculated again by the least- 
squares method by assuming no component along the 
e axis of the 2(d) site spin. 

Now the subsequent procedure is purely mathe- 
matical. A remarkable result, (p~ c o s  ~03) 2 ~ ( p b  sin (03) 2, 
is obtained by substituting the first equation from the 
second, giving @3 = q" 4 5  o or ___ 135 °. We find that these 
lead to the same solutions. They are given as solutions 
I and II in Table 2, where the fl's are the angles of the 
spins from the c axis, the p's are the effective scattering 
amplitudes in 10 -12 cm, /za and/za are the magnetic 
moments per atom in the respective sites in Bohr 
magnetons taking account of the population in metal 
sites, and/tnet is the effective ferromagnetic moment 
per molecule Fe0.9Mn0.gGe in Bohr magnetons.//net is 
given by the following relation: 

//net = ½10'95((!X,)1 + (lX,)Z) + 0"85((!xa)3 + (~ta)4)] 

= ½[(2p~ + 2p~) 2 + (pa b sin ¢pl +pa b sin ~2 +Pbd sin (/9 3 

+p~ sin ~04) 2 + (pa ° cos ~ox +pb a cos (P2 +P,~ cos ~03 

+pb a cos q~4)211/2/(eZT/2meZ ) , 

where e and m are the electron charge and mass, re- 
spectively, c is the velocity of light, and :y is the mag- 

netic moment of the neutron expressed in nuclear 
magnetons. It is noted that in this equation ¢pa = -~02 
and (/93 = -  (/94 and the factor ½ enters because of the 
presence of two molecules in the unit cell. 

Table 2. Magnetic structure o f  Feo.gMno.gGe 
Model  

Ba 
2(a) site (Pl,2 

f f a  e 

pa b 

Pa 

2(d) site (03.4 
pa c 
pa 0 
/tnet 

I II I I I  IV 

1 "73 2"72 0-82 2"60 
46 ° 64 ° 90 ° 90 ° 

_+102 ° _+128 ° _+90 ° _+132 ° 
0"31 0"31 0 0 
0"32 0"62 0"21 0"67 
2-36 0"38 2"75 0 
90 ° 90 ° 90 ° 90 ° 

_+45 ° _+45 ° _+45 ° - -  
0 0 0 0 

0.54 0.09 0.63 0 
1.66 1.66 1-66 1.66 

fl's are angles from the c axis. 

Solutions I and II also occur in cases (ii) and (iii) 
where similarly p~= 0. Solutions III and IV in Table 2 
are derived from cases (iv), (vi), (vii), and (viii) where 

C--  ¢ - -  pa--Pd--O. 
In the above calculations, the most general expres- 

sions for q2F~ are employed. Any more reflection meas- 
urements only offer less accurate data because of the 
uncertainty in the form factor in high angle reflections. 
The analytical method used is quite general except for 
the assumption that p~=0 or p~=p~=0, the validity 
of which depends on the experimental accuracy, but 
the actual structure should not be far from either one 
found here. Table 3 gives the values of q2F~ calculated 
and observed. 

Table 3. Magnetic intensities q2F~ o f  Fe0.gMn0.gGe 

Model  
h k . l  I & II  I I I &  IV Obs. 

00.1 0.98 0.98 0-99 
00.3 0.98 0.98 0.52 
11.1 0.56 0-56 0-64 
00.2 0.80 0.80 0.80 
10.1 0.67 0.67 0.70 
10.3 0.92 0.92 0.62 
20.1 0.56 0.56 0.32 
20.3 0.77 0-77 1.00 
10.2 0.56 0-65 0.56 
20.2 0.60 0.52 0.60 
10.0 0.73 0.40 0-27 
11.0 0.59 0.40 1-83 

Magnetization measurements 

Fig.3 shows the magnetization data (cr gram) of 
Fe0.gMn0.gGe from room temperature to 77°K (liquid 
nitrogen temperature) at an applied field of 12 kilo- 
gauss. The Curie temperature was found to be 241 °K 
according to a linear plot of a 2 versus temperature. 
The magnetization of 45 emu.g -1 at liquid nitrogen 
temperature yielded 1.39pB per molecule which is in 
agreement with the value of 1.66pB obtained from the 
neutron diffraction data. Above the Curie point the 
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Fig.3. Magnetization (a gram) and 1/Zg of Feo.9Mno.9Ge at 12 kilogauss. 
calculated inverse susceptibility per gram, 1/Xg, is also 
shown, although the temperature range is not wide 
enough for calculation of the slope. 

Discussion 

We have found four possible magnetic structures for 
Fe0.9Mn0.9Ge from the neutron diffraction data, al- 
though we cannot resolve them by the available data. 
However, by considering their relation to the struc- 
tures of the binary compounds, MnsGe3 (Ciszewski, 
1963) and Fel.77Ge (Adelson & Austin, 1965), it can 
be seen that the most probable structure is the one 

corresponding to model II. In this model, the moments 
per metal atom in the respective sites are/ta = 2.72 and 
/z~=0.38. Noting that the metal atom distribution is 
0.83Mn+0.12Fe in site (a) and 0.78Fe+0.07Mn in 
site (d), we can take the (a) sublattice as Mn atoms 
and the (d) sublattice as Fe atoms, as in the magnetic 
analysis, and take 2.72/zn as the moment per Mn atom 
and 0"38/tB as the moment per Fe atom. The former 
moment has a c component while the latter lies in the 
basal plane with a cant angle + 45 °. On the other hand, 
in terms of the notation in the present paper the 
MnsGe3 structure has / t ,=3.00,  /re=2"00, /Znet=2"5, 
~01=~03=0 °, fl ,=fla=O ° (spins parallel to the c axis) 
and the Fel.77Ge structure has /z ,=l .30,  /za=l.10, 
/tnet-= 1" 17, rpl = 0 °, rp3 = 28 °, ft, = fla = 90 ° (spins in the 
basal plane, including (d) site spins with a cant angle 
+ 28 ° from the common ferromagnetic components). 
Therefore, the spin structure of Fe0.9Mn0.gGe would 
resemble the structures of both of these binary com- 
pounds, that is, the suggested structure has the sub- 
lattice (a) similar to MnsGe3 in magnitude of moment, 
with a component along the c axis, while the sublattice 
(d) has low moments with canted directions in the 
basal plane, comparable with the (d) sublattice of 
Fes.77Ge. Although these considerations do not exclude 
the other solutions, they do indicate greater disparity 
with the binary compounds. 

The authors wish to thank Mr J. W. Moody for syn- 
thesis of materials, and Mr N.A. Richard for magne- 
tization measurements. 
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Application de la Th6orie Dynamique de S. Takagi au Contraste d'un D6faut Plan 

en Topographic par Rayons X. I. Faute d'Empilement 
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(Ref.u le 1 mars 1968) 

Takagi's dynamical theory of X-ray diffraction by a perfect crystal is described for the two cases of an 
incident plane-wave and a spherical wave. Emphasis is put on the relation between these two cases. 
This theory is then applied to a single stacking-fault in a perfect crystal and the same relation is found 
between the plane-wave case and the spherical wave case. This relation enables us to calculate easily 
the stacking-fault fringe contrast by the stationary phase method. 

1. Introduction shimoto, Howie & Whelan, 1960, 1962; Gevers, Van 
Landuyt & Amelinckx, 1965, 1966). 

Le ¢ontraste de l'image d'un d6faut plan a ~t~ 6tudi6 Le calcul en est simplifi6 dans une certaine mesure 
il y a plusieurs ann6es d6j/t dans le cas de la micro- par le fair que l'onde incidente est plane et que l 'on 
scopie 61ectronique (Whelan & Hirsch, 1957a, b; Ha- peut utiliser l 'approximation dite de la colonne. I1 est 


